Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 14 (2004) 515-518

Modulation of selective serotonin reuptake inhibitor and 5-HT_{1A} antagonist activity in 8-aza-bicyclo[3.2.1]octane derivatives of 2,3-dihydro-1,4-benzodioxane

Adam M. Gilbert,^{a,*} Gary P. Stack,^b Ramaswamy Nilakantan,^a Jason Kodah,^a Megan Tran,^b Rosemary Scerni,^c Xiaojie Shi,^c Deborah L. Smith^c and Terrance H. Andree^c

^aChemical and Screening Sciences, Wyeth Research, 401 N. Middletown Road, Pearl River, NY 10945, USA

^bChemical and Screening Sciences, Wyeth Research, CN-8000, Princeton, NJ 08852, USA

^cNeuroscience Discovery Research, Wyeth Research, CN-8000, Princeton, NJ 08852, USA

Received 1 August 2003; accepted 3 October 2003

Abstract—2,3-Dihydro-1,4-benzodioxanes with aryl 8-aza-bicyclo[3.2.1]oct-3-ene attachments **2** produce compounds with potent 5-HT-T affinity, and weak 5-HT_{1A} affinity and α_1 affinity. This compares with 2,3-dihydro-1,4-benzodioxanes containing 8-aza-bicyclo[3.2.1] octan-3-ol attachments **4** which possess potent 5-HT_{1A} affinity, moderate to good selectivity over α_1 and little 5-HT-T affinity. A 3-benzothiophene analogue of **4** (**30**) was synthesized which possesses potent 5-HT_{1A} affinity and especially good selectivity over both α_1 and 5-HT-T.

© 2003 Elsevier Ltd. All rights reserved.

Inhibition of serotonin (5-HT) receptors, namely the serotonin transporter (5-HT-T), has led to the development of many clinically approved agents for depression and anxiety. However, these drugs have noticeable side effects as well as a delayed onset of action. Selective antagonists for the 5-HT_{1A} receptor have been postulated to be useful in the treatment of CNS disorders such as anxiety,² and Alzheimer's disease.³ In addition, 5-HT_{1A} antagonists may have an important role in treating depression in that they could facilitate the onset of action of selective serotonin receptor inhibitors (SSRIs) by blocking 5-HT_{1A} autoreceptors which are believed to decrease the firing of serotonergic neurons in the presence of 5-HT.⁴ Thus, an agent with both activities (SSRI and 5-HT_{1A} antagonism) would be a significant improvement on currently approved therapies. As proof of concept, co-administration of 5-HT_{1A} antagonists/partial antagonists and SSRIs has been clinically shown to induce faster antidepressant action than administration of SSRIs alone.^{5,6}

In the course of our study of novel ligands that would possess both SSRI and 5-HT_{1A} antagonist activities, we

began synthesizing molecules containing the aryl 8-azabicyclo[3.2.1]oct-3-ene moiety 1. Benzodioxane derivatives of 1 (2) were found to possess potent affinity and inhibitory activity for the 5-HT-T (Fig. 1). Interestingly changing the aryl 8-aza-bicyclo[3.2.1]oct-3-ene moiety in 1 to an 8-aza-bicyclo[3.2.1] octan-3-ol 3 produces 4, a series of molecules with potent 5-HT_{1A} affinity and relatively little 5-HT-T affinity. In addition, many of the members of series 4 were found to possess potent 5-

Figure 1. Aryl 8-aza-bicyclo[3.2.1] octanes of interest.

^{*}Corresponding author. Fax: +1-845-602-5561; e-mail: gilbera@ wyeth.com

HT_{1A} antagonist activity. We now wish to report the synthesis and initial structure–activity relationships (SARs) of these two new classes of 5-HT antagonist compounds.

Schemes 1–4 show the synthesis of the target molecules. The aryl 8-aza-bicyclo[3.2.1] oct-3-ene derivatives 1, were prepared by demethylation of tropinone 5 with 1-chloroethyl chloroformate,⁷ protection of the secondary amine with (BOC)₂O to form 6,⁸ addition of an aryl lithium, followed by dehydration/deprotection with TFA (Scheme 1).

The aryl 8-aza-bicyclo[3.2.1] octan-3-ol derivatives **3** were prepared by demethylating tropinone **5** with 1-chloroethyl chloroformate,⁷ protection of the resulting secondary amine with BnBr to give **8**, addition of an aryl lithium to exclusively give the *endo*-alcohol product **9**,⁹ followed by removal of the benzyl group with Pd/C, HCO₂NH₄ (Scheme 2).¹⁰

The 8-OMe and 8-OEt benzodioxane headpieces were synthesized as tosylates 16 (R = Me and R = Et), as shown in Scheme 3. The sequence features a Baeyer-Villiger oxidation/basic hydrolysis conversion of aldehyde 12 to phenol 13, the attachment of (2R)-(-)-glycidyl tosylate, debenzylation with concomitant ring closure/epoxide opening to produce 15, and tosylation with TsCl to produce 16 (Scheme 3).

The target aryl 8-aza-bicyclo[3.2.1] oct-3-ene benzodioxanes 2 and aryl 8-aza-bicyclo[3.2.1] octan-3-ol benzodioxanes 4^{11} were prepared by heating 1 or 3 with 16 in the presence of K_2CO_3 in MeCN or by heating 2

Scheme 1. Reagents and conditions: (a) (1) 1-chloroethyl chloroformate, DCE, 80 °C; (2) MeOH, 50 °C; (3) (BOC)₂O, *i*-PrOH, H₂O, NaOH, 23 °C; (b) ArLi, THF, -78 to 23 °C; (c) TFA, CH₂Cl₂, 23 °C.

Scheme 2. Reagents and conditions: (a) (1) 1-chloroethyl chloroformate, DCE, 80°C; (2) MeOH, 50°C; (3) BnBr, Et₃N, THF, 23°C; (b) ArLi, THF, -78 to 23°C; (c) 10% Pd/C, HCO₂NH₄, MeOH, 50°C.

equivalent of 1 or 3 with 1 equivalent of 16 in warm DMSO (Scheme 4).

All aryl 8-aza-bicyclo[3.2.1] oct-3-ene benzodioxanes 2 and aryl 8-aza-bicyclo[3.2.1] octan-3-ol benzodioxanes 4 were tested in vitro to determine affinity for the 5-HT_{1A}, 5-HT transporter (5-HT-T) and α_1 receptors. Human 5-HT_{1A} (HC-5-HT_{1A}) receptor binding was determined via the displacement of [3H]-8-OH-DPAT from human 5-HT_{1A} transfected CHO cells according to the method of Dunlop et al. ¹² Assessment of compound agonism/ antagonism on the HC 5-HT_{1A} receptor was determined using a [35 S]-GTP γ S¹³ and/or a forskolin stimulated cyclic AMP assay (c-AMP). A protocol similar to that of Cheetham et al. was used to determine 5-HT transporter affinity (RB5-HT-T). 14 IC₅₀ values (HC-5-HT-T) were calculated from the K_i values according to the method of Cheng et al. 15 Selectivity over the α_1 receptor was determined by displacement of [3 H]-prazosin (α_{1}) 16 since α_1 receptor affinity could lead to unwanted side effects for a selective 5-HT agent. An optimal compound would have potent 5-HT-T/5-HT_{1A} inhibitory activity and weak or no (α_1) affinity.

Biological data for all newly prepared aryl 8-aza-bicy-clo[3.2.1]oct-3-enes 2 are presented in Table 1. In all

Scheme 3. Reagents and conditions: (a) NaH, BnBr, THF, 23 °C; (b) NaH, MeI or EtI, DMF, 23 °C; (c) (1) *m*-CPBA, CH₂Cl₂, 23 °C; (2) Al₂O₃, MeOH, 23 °C; (d) NaH, (2*R*)-(-)-glycidyl tosylate, solvent, X°C; (e) 5% Pd/C, 1,4-cyclohexadiene, NaHCO₃, EtOH, 80 °C; (f) TsCl, TEA, DMAP, CH₂Cl₂, 23 °C.

Scheme 4. Reagents and conditions: (a) K₂CO₃, MeCN, 80 °C or 1 equiv **16**, 2 equiv **1** or **9**, DMSO, 80 °C.

cases, the 2(R) enantiomers were prepared since is known that the 2(R) enantiomer of (2,3-dihydro-benzo[1,4]dioxin-2-yl)-methylamines show stronger 5-HT receptor affinity/function compared to the 2(S) enantiomer. 17 2-Naphthyl analogue 16 was initially prepared since 2-naphthyl 8-aza-bicyclo[3.2.1] oct-3-ene is known to have potent 5-HT-T affinity. 18 This compound shows potent 5-HT-T affinity/inhibition, good selectivity over the α_1 receptor and some affinity for the 5-HT_{1A} receptor. The 1-napthyl compound 17 comparably shows weaker 5-HT-T affinity but more 5-HT_{1A} affinity. Indole 18 shows the best balance of 5-HT-T/5-HT_{1A} affinity, but the potency at the α_1 receptor increases as well. The 8-quinoline analogue 19 compares with the 1-naphtyl compound 17 except that it shows more α_1 affinity, and the 3,4dichlorophenyl molecule 20 shows a comparable activity profile to 16. In general, the RB5-HT-T affinities are single to double digit nM while the HC5-HT-T functional IC₅₀s are much less potent (\sim 2 orders of magnitude). The origin of this difference is not known.

At this point we were interested in exploring the biological profile of compounds where the 8-aza-bicyclo[3.2.1]oct-3-ene moiety 1 would be changed to an 8-aza-bicyclo[3.2.1] octan-3-ol 3. This structural change produces compounds 4 with a dramatic activity profile shift compared to 2. 2-Napthyl analogue 21 shows potent 5-HT_{1A} affinity and only moderate 5-HT-T affinity (Table 2). This is a reverse of the activity profile seen for 2-naphtyl-8-aza-bicyclo[3.2.1]oct-3-ene compound 16. Moreover, 21 shows potent 5-HT_{1A} antagonist activity in both the [35 S]GTP γ S and c-AMP assays. In an effort to reduce the α_1 affinity of 21, compound 22 (R = Et) was prepared. This compound shows reduced α_1 affinity compared to 21, good 5-HT_{1A} affinity and is devoid of 5-HT-T affinity at 100 nM.

Hoping to optimize **21** and **22** to produce selective 5-HT_{1A} antagonists, different aryl groups were attached to the 8-aza-bicyclo[3.2.1] octan-3-ol benzodioxane core. Phenyl analogues **23** and **24** showed potent 5-

Table 1. 5-HT_{1A} affinity, 5-HT_{1A} functional activity, 5-HT-T affinity, 5-HT-T functional activity and α_1 affinities for 8-aza-bicyclo[3.2.1]oct-3-ene 2,3-dihydro-1,4-benzodioxanes 2

.

Compd	Ar	$HC5$ - HT_{1A} $K_i (nM)^a$	RB5-HT-T $K_{\rm i}$ (nM)	HC5-HT-T IC ₅₀ (nM) ^b	K_{i} (nM)	
16	2-Naph	43% @ 1000 nM	1.4	76.7	229	
17	1-Naph	357	26.0	951	26% @ 100 nM	
18	3-(5-F-1 <i>H</i> -indole)	127.7	8.5	138	71	
19	8-Quinoline	307.1	33.0	109.0	46.2	
20	3,4-Dichlorophenyl	35% @ 1000 nM	4.69	260.0	> 1000	

 $^{^{}a}$ K_{i} values are the mean of two experiments run at six different concentrations. 95% confidence limits were generally $\pm 10\%$ of the mean value.

Table 2. 5-HT_{1A} affinity, 5-HT_{1A} functional activity, 5-HT-T affinity, 5-HT-T functional activity and α_1 affinities for aryl 8-aza-bicyclo[3.2.1]octan-3-ol 2,3-dihydro-1,4-benzodioxanes 4

Compd	R	Ar	$HC5-HT_{1A}$ $K_i (nM)^a$	[35 S]GTP γ S: I_{max} (%) IC $_{50}$ (nM) $^{\text{b}}$	cAMP: E_{max} (%) IC ₅₀ (nM) ^b	RB5-HT-T $K_{\rm i} ({\rm nM})$	$K_i \stackrel{\alpha_1}{(nM)}$
21	Me	2-Naph	0.81	100, 9.85	0, 21	216.5	42
22	Et	2-Naph	5.87	ŇA	NA	0% @ 100 nM	103.5
23	Me	Ph	1.53	100, 25	0, 21	0% @ 100 nM	NA
24	Et	Ph	3.05	NA	NA	0% @ 100 nM	32.7
25	Me	2-OMe-Ph	39.0	$E40^{c}$	NA	12% @ 100 nM	NA
26	Me	3-CF ₃ -Ph	0.33	$E90^{d}$	NA	9% @ 100 nM	9.9
27	Et	3-CF ₃ -Ph	2.92	NA	NA	0% @ 100 nM	12.9
28	Me	2-Pyr	46.0	100, 1484	NA	0% @ 100 nM	NA
29	Et	2-Pyr	61.6	NA	NA	6% @ 100 nM	147
30	Me	3-Benzothiophene	1.6	92, 36	0, 130	0% @ 100 nM	106
31	Et	3-Benzothiophene	16.7	NA	NA	4% @ 100 nM	123.5

 $^{^{}a}$ K_{i} values are the mean of two experiments run at six different concentrations. 95% confidence limits were generally $\pm 10\%$ of the mean value.

 $^{{}^{\}rm b}{
m IC}_{50}$, $E_{
m max}$ and $I_{
m max}$ values are reported from one experimental run at six different concentrations.

 $^{^{\}rm b}$ $\dot{\rm IC}_{50}$, $E_{\rm max}$ and $I_{\rm max}$ values are reported from one experimental run at six different concentrations.

 $^{^{\}rm c}E_{\rm max} = 40\%$.

 $^{^{\}rm d}E_{\rm max} = 90\%$. NA, not available.

 HT_{1A} affinity, no 5-HT-T affinity, but the R = Et analogue still possessed α_1 affinity. Analogues **26** and **27** also show good 5-HT_{1A} affinity, practically no 5-HT-T affinity, but these compounds behave as partial agonists/ agonists at the 5-HT_{1A} receptor. The 2-pyridyl compounds **28** and **29** show reduced 5-HT_{1A} affinity compared to the corresponding phenyl analogues and the 3-benzothiophene molecules **30** and **31** compare favorably with **21** and **22**. Compound **30** is the most selective 5-HT_{1A} antagonist that we have prepared (5-HT_{1A}: K_i : 1.6 nM [35 S]GTPγS: I_{max} : 92%, IC₅₀: 36 nM, α_1 : 106 nM).

Thus we have disclosed a series of aryl 8-aza-bicyclo[3.2.1] oct-3-ene benzodioxanes **2** and aryl 8-aza-bicyclo[3.2.1] octan-3-ol benzodioxanes **4** that have potent affinity for the 5-HT-T and 5-HT_{1A} receptors respectively. In addition, several of the 8-aza-bicyclo[3.2.1] octan-3-ol analogues **4** show good 5-HT_{1A} antagonist activity. A 3-benzothiophene 8-aza-bicyclo[3.2.1] octan-3-ol analogue **30** shows potent 5-HT_{1A} affinity and antagonism, no 5-HT-T affinity and is > 50 fold selective for the 5-HT_{1A} receptor over α_1 . Further studies concerning agents that target the 5-HT_{1A} and 5-HT-T receptors will be reported in due course.

References and notes

 Romero, L.; Casanovas, J. M.; Hervas, I.; Cortes, R.; Artigas, F. Antidepressants 1997, 1.

- Fletcher, A.; Cliffe, I. A.; Dourish, C. T. Trends. Pharmacol. Sci. 1993, 14, 441.
- Bowen, D. M.; Francis, P. T.; Pangulus, M. N.; Stephens, P. H.; Procter, A. W. Lancet 1992, 11, 132.
- 4. Blier, P.; Bergeron, R. J. J. Clin. Psychiatry 1998, 59, 16.
- Argitas, F.; Perez, V.; Alvarez, E. Arch. Gen. Psychiatry 1994, 51, 248.
- Blier, P.; Bereron, R. J. Clin. Psychopharmacol. 1995, 15, 217.
- Olofson, R. A.; Martz, J. T.; Semet, J. P.; Diteau, M.; Malfroot, T. J. Org. Chem. 1984, 49, 2081.
- Patchett, A. A.; Tata, J. R.; Lu, Z. British U.K. Patent Appl. GB 2298647, 1996; Chem. Abstr. 1997, 126, 60192.
- Cope, A. C.; D'Addieco, A. J. Am. Chem. Soc. 1951, 73, 3419.
- Audia, J. E.; Hibschman, D. J.; Krushinski, J. H.; Mabry, T. E.; Nissen, J. S.; Rasmussen, K.; Rocco, V. P.; Schaus, J. M.; Thompson, D. C.; Wong, D. T. EP 722941.
- 11. All new compounds gave satisfactory ¹H NMR, IR and MS data in accord with the assigned structure.
- 12. Dunlop, T.; Zhang, Y.; Smith, D. L.; Schechter, L. E. J. Pharmacol. Toxicol. Methods 1998, 40, 47.
- Lazareno, S.; Birdsall, N. J. M. Br. J. Pharmacol. 1993, 109, 1120
- Cheetham, S. C.; Viggers, J. A.; Slater, N. A.; Heal, D. J.; Buckett, W. R. Neuropharmacology 1993, 8, 737.
- Cheng, Y.-C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 23, 3099.
- 16. Morrow, A. L.; Creese, I. Mol. Pharmacol. 1986, 29, 321.
- Hibert, M. F.; Gittos, M. W.; Middlemiss, D. N.; Mir, A. K.; Fozard, J. R. J. Med. Chem. 1988, 31, 1087.
- Moldt, P.; Scheel, K.; Joergen, O. G. M.; Nielsen, E. O. WO 97/13770.